Connect with us
r25IQAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJcBa8QAASArlHgAAAAASUVORK5CYII= r25IQAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJcBa8QAASArlHgAAAAASUVORK5CYII=

World

“Seedless fruit is not something new”

Let’s admit it—we really don’t like seeds. That is not universally true, of course. After all, many food items are actually seeds (beans, peas, rice, corn, coffee, cacao) or come from seeds (flour, oil), and we need seeds to propagate many plants. However, when it comes to grapes, watermelon, banana, citrus and some other fruit and vegetables, seeds can be a nuisance. Seeds in many fruits are intermingled with the part we eat, and not confined to the inedible portion like apples, or small like blueberries and strawberries. The crunch of a large seed is not enjoyable and unless it is a contest, it is often socially awkward to spit them out. Therefore, we jump at the chance to get rid of seeds, or at least reduce them to a manageable number.

Seedless plants are not common, but they do exist naturally or can be manipulated by plant breeders without using genetic engineering techniques. No current seedless plants are genetically modified organisms (GMOs). As with many plant systems, several steps must work correctly in the “pathway” for production of the final product (seeds in this case). Compromise in any one step leads to failure. Seedlessness to the plant is useless since it fails to produce offspring, that is why most seedless plants are propagated through grafting or cuttings (cucumber and watermelon being exceptions). However, it is a heritable trait carried on through pollen and maintained in the gene pool until the right parental combination again occurs to produce a plant with seedless fruit. Since these occur naturally, and humans being observant, curious and resourceful creatures, once we find something we like, we take full advantage of it. So, why are some fruit seedless?

Virgin fruit
All seedless fruit fall under a general category called parthenocarpy. Parthenocarpy is a Greek word meaning “virgin fruit.” This is a situation where fruit develops without fertilization of the ovule (the part of the flower that when fertilized develops into a seed). In these plants, pollination may or may not be necessary to trigger hormone production to stimulate the ovary wall to swell and form fruit. However, fertilization and seed development does not occur and there are no “seed traces” or seed remnants. In some cases, fruit development can be stimulated in the absence of pollen through external hormone applications. This seedlessness is present in some varieties of cucumbers, persimmons, grapes, citrus, pineapples and others. This type of seedlessness often produces smaller fruit than their seeded counterparts.

Some plants capable of producing seed may have sterile pollen or other reasons that render them incapable of forming seed, and to produce seed they require pollination by another, genetically different member of that species. When planted in large orchards, they are surrounded by genetically identical copies of themselves, causing them produce parthenocarpic fruit. Many citrus operate this way.

Seed trace
Stenospermocarpy is a type of parthenocarpy where fertilization occurs and the seed begins to develop but eventually aborts, leaving behind a noticeable “seed trace.” Seed traces vary in size depending on how far seed development progressed before abortion and are generally soft enough that they do not have the crunch of fully developed seed. This occurs in most seedless grapes, watermelon and other fruits. Breeders of seedless grapes capitalize off this partial development process by removing developing seeds prior to abortion and growing them into plants using tissue culture techniques. This way, both parents possess the seedless trait thereby producing a higher number of seedless offspring.

Disruption of the seed development process occurs for a number of reasons. Watermelon and banana are seedless because they have three sets of chromosomes, giving them an odd number to work with when they produce pollen and egg cells. Most organisms have an even number of chromosomes, so the resulting egg and pollen cells receive an even number of chromosomes that contain the genetic material, e.g., DNA, to combine to make offspring. When triploids form eggs and pollen, the process produces an odd number, resulting in egg and pollen not receiving an equal chromosome compliment, therefore they lack information needed to be viable. Pollen from triploids often appears shriveled and poorly formed.

Crossing
Triploid organisms occur naturally or they can be developed by crossing a diploid (two sets of chromosomes) with a tetraploid (four sets of chromosomes) to produce a triploid. In the case of watermelon, pollination needs to occur for fruit to develop and since triploid pollen does not germinate, diploid varieties are interplanted to provide viable pollen to induce fruit without complete seed development. The white seed traces are readily visible in watermelon

Stenospermocarpic seedlessness in all grapes studied so far are all due to a naturally occurring harmful “point mutation” in the section on the grape chromosome responsible for seed development. Many use the word mutation or mutant in a negative context, but most changes we find desirable occurred naturally.

An effort was made to develop seedless cherries. However, there is a difference between a “pit” and a seed. A pit is the hard, stony tissue surrounding the seed in olives, cherries, peaches, plums and apricots and is not part of the seed. Researchers were able to develop seedless but not pitless cherries.

Seedlessness may or may not change the character of the fruit. Seed in a fruit can help draw energy and nutrients into the fruit changing characteristics such as nutrient and sugar levels, fruit size, fruit number, time of maturity and others. Breeders and horticulturalists have done a good job using standard breeding and production techniques to overcome these limitations.

For more information:
Michigan State University
www.canr.msu.edu

Continue Reading

World

Israel announces creation of global seed company

Two Israeli seed producers, Nirit Seeds and TomaTech, have joined forces to create Israel’s largest vegetable seed company. This synergy will enable unique seed breeding research and development that will accelerate the company’s growth in the international seed markets.

Upon completion of the merger, the company will have more than 80 employees worldwide, including molecular biologists, breeders, agronomists, and others.
The company will improve its breeding activities in Israel, Spain, Mexico and Italy, as well as significantly expand its representation in the Netherlands and North America, with a particular focus on growing vegetables in high-tech greenhouses.

Nirit Seeds is one of the most successful internationally traded tomato and pepper seed producers, investing in the development of revolutionary genetic technologies. TomaTech is one of the leading tomato seed companies in Israel, developing premium varieties, including those resistant to the dangerous Tomato Brown Ruffle Virus (ToBRFV).

The production of crop seeds is one of the most advanced and high-tech sectors in Israel. According to the Seed Department of the Federation of Israel Chambers of Commerce, seed exports currently generate $200 million in annual revenue. There are about 25 large and medium-sized companies in the local industry.

For reference. According to market research, the global vegetable seed industry is valued at $8 billion a year and is growing at a CAGR of 8%.

Prepared according to https://www.freshplaza.com

Continue Reading

World

Karachay-Cherkessia became one of the leaders in the production of greenhouse vegetables at the end of 2021

fdQAAAABJRU5ErkJggg==

Greenhouse vegetable production in 2021 reached a record 1.4 million tonnes. According to the Ministry of Agriculture of the Russian Federation, the leaders among the regions in this segment are the Karachay-Cherkess Republic, Lipetsk, Moscow, Kaluga, Volgograd, Novosibirsk, Saratov, Chelyabinsk regions, Krasnodar and Stavropol Territories, the Republics of Bashkortostan and Tatarstan. These regions account for more than 60% of the total production in the country. The intensive development of greenhouse projects in our country helps to provide Russians with fresh vegetables all year round. Last year, the harvest in winter greenhouses updated the 2020 record – more than 1.4 million tons of products were received. Including the production of cucumbers amounted to at least 830 thousand tons, and tomatoes – 590 thousand tons. It is expected that by 2025 the volume of vegetable production in year-round greenhouses will be at least 1.6 million tons of vegetables.

Source

Continue Reading

World

December: Special Year Overview

In 2022, it will be 22 year since the new millennium started. Can’t believe it? Neither can we, but it is true. Before we go there, it is time to reflect on what has happened this year. Over the next couple of weeks, we will look back at 2021 and we will highlight the most important events that impacted the industry.

New greenhouses, events, even a few shows, technical novelties, and all other relevant news will pass by, offering you something other than Covid to talk about during Christmas and New Years’.

yearoverview

Wish your customers Happy Holidays
This special also offers an opportunity to put your company in the spotlight with a banner in this special box. This banner can be booked until December 24 on our newsletters. For more information, feel free to send an email to: info@hortidaily.com 

Continue Reading

Trending

Total
12
Share