Connect with us

Technique system

Obtaining cuttings with new techniques brings opportunities for ash trees

The common ash (Fraxinus excelsior L.) is a temperate tree species with a wide distribution across Europe. It is also found in Asia Minor and Africa and from the Arctic Circle to Turkey. Of the four different ash species growing naturally, common ash is the most important commercially. The properties of high-quality timber such as elasticity, hardness, and impact resistance make it is used widely in many different industries. It is mainly used for tool holders and sports equipment, e.g. hockey sticks or oars. Its straight grains make it widely used in carpentry for the production of stairs, handrails, doors, windows, and veneers.

The common ash is also an excellent material for parquet. Due to calorific value, it is used as fuelwood. In central Europe, it has been used as an ornamental tree in parks and along roads and city streets. Ash is one of the most common trees in the United Kingdom. In many countries, it has some ethnic and cultural significance. There is also a very long tradition of using common ash as a source of natural healing substances. For example, substances in the root and leaves have a diuretic effect and help with gout and kidney stones. The bark and leaves extracts are used in the treatment of rheumatic diseases such as rheumatoid arthritis. This plant also has cosmetic properties. In the northern and western parts of its range, common ash grows in lowland forests, while further South and West it increasingly grows in mountainous areas. It is an important component of several natural habitats.

Diseases and means of protection
Since the mid-1990 in European countries, we have observed dieback of this species, causing the death of over 90% of all ash trees in several countries. The ash common dieback is observed in Norway, Denmark, Lithuania, Austria, Belgium, the Czech Republic, Finland, France, Germany, Hungary, Italy, the Netherlands, Slovenia, Sweden, Estonia, Latvia, Switzerland, and Great Britain. The dieback is caused by the ascomycete Hymenoscyphus fraxineus. This phenomenon threatening the existence of F. excelsior over our continent. A wide range and variety of purposes of common ash wood cause that dieback of this species is an enormous problem, not only ecological but also economic.

Given the above, solutions for renewal and preservation should be developed. It is even more important because the observed dying of common ash already results in very clear problems in obtaining seeds. To make matters worse the seeds are often poor quality and have low germination, which makes it very difficult to obtain new specimens of ash. One way to protect and regenerate common ash is to obtain seedlings in vitro.

Currently, the method of somatic embryogenesis can be used for this purpose. In this method, the embryogenic callus is inducted with somatic embryos at all stages of embryo development, i.e., globular, heart, torpedo, and cotyledonous stages. Ultimately, the somatic embryo can be used to regenerate the entire plant. However, the method of somatic embryogenesis is characterized by the high cost and commonly observed genetic instability of callus cells. Therefore, the development of a new, more effective method is desirable.

The solution of scientists from Krakow in Poland
The scientists from the Krakow Universities came up to fulfill these expectations. The interdisciplinary research team, composed of dr hab. inż. Katarzyna Nawrot-Chorabik, prof. UR from the Faculty of Forestry of the University of Agriculture in Krakow and dr hab. Dariusz Latowski from the Faculty of Biochemistry, Biophysics, and Biotechnology of Jagiellonian University has developed a technology for obtaining common ash seedlings by indirect adventitious organogenesis.

This method omits the stage of forming and development of the somatic embryo, and thus significantly reduces the number of passages and expensive components of culture media. Plant regeneration occurs directly from callus tissue, which results not only in lower costs of seedling production but also, what is very important, improved genetic stability compared with micro-propagation by the method of somatic embryogenesis.

Besides, the developed method allows obtaining calluses with selected genotypes, e.g. resistance to negative abiotic or biotic factors (including pathogenic fungi). The obtained seedlings have genotypes identical to the callus genotype and therefore are also resistant to harmful biotic and abiotic environmental conditions. This can significantly improve the condition of stands with common ash, positively affecting the ecological and economic aspects related to this species of tree.

Advantages of the technology:
– obtaining genetically stable cuttings;
– obtaining seedlings with selected genotypes, e.g. pathogen-resistant;
– simpler and less time-consuming method compared to currently used methods;
– lower costs of obtaining seedlings compared to currently used methods

Innovation is the subject of the patent application. Further research on technology development is carried out at the Faculty of Biochemistry, Biophysics, and Biotechnology of Jagiellonian University and Faculty of Forestry of the University of Agriculture in Krakow.

Centre for Technology Transfer CITTRU from Jagiellonian University is looking for entities interested in cooperation in implementing the invention.

For detailed information please contact:
Renata Bartoszewicz, Ph.D.
Technology Transfer Officer
Centre for Technology Transfer CITTRU
Jagiellonian University
Phone: +48 12 664 42 08, 515 493 518
e-mail: renata.bartoszewicz@uj.edu.pl

Equipment

Japanese tomato harvest robot in action in Tomatoworld

https://en.inaho.co/

A new tomato harvesting robot has recently been driving through the paths of Tomatoworld. It is the latest product of inaho Europe, a subsidiary of the Japanese company inaho.  “The purpose of launching the demonstration at Tomatoworld is to allow more interested people to see the robot in operation,” says Takahito Shimizo, managing director of inaho Europe. “We want to demonstrate the robot and receive more feedback from growers, in order to develop and increase the value of the robot.”

Snack tomato robot
Tomatoworld is a horticultural information and education center in Westland, Netherlands. In the greenhouse, snack tomatoes are grown.

Takahito Shimizo shows how the robot is a fully automatic harvesting device for snack tomatoes. “The AI algorithm identifies the ripe fruits by color and size and then harvests the ripe snack tomatoes.”

inaho has already conducted field trials with growers in Japan and demonstrated a reduction in human working hours of around 16% by setting up a workflow in which robots harvest during the nighttime before humans do.

Meanwhile, inaho also found that there are differences between Japanese and Dutch growers in terms of harvest and post-harvest operations. “For example, the standards for the picking appropriate color of the fruits and the frequency of harvesting are different,” says Takahito.

In order to develop a solution that is more suitable for Dutch growers, inaho is keen to get a better understanding of the Dutch growers’ practices and receive more operational feedback from them. In this context, inaho is also actively seeking a grower partner who would be able to carry out a field trial of the harvesting robot.

Growers welcome
The demonstration in Tomatoworld also contributes to this: growers are invited to come and see and assess the robot. “We are happy to discuss details about the robot, such as its functions and expected future updates. We can also provide simulations to calculate the labor and cost savings, based on the results of the trials in Japan,” Takahito says.

It is not the Japanese company’s first robot. inaho already launched an AI-equipped asparagus harvesting robot (video) in 2019. They are also working on a robot that can phenotype plants. inaho operates according to the Robot-as-a-Service (RaaS) business model – paying per harvested product.

Video

 

Continue Reading

Cultivation

Symphony of Salad Studies

Ten years ago, the first container farms began to appear in the United States, where enterprising startups tried to grow salads and other green crops. They began to install containers at the places of harvest consumption so as not to waste time, effort and money on the delivery of goods. The first to go were the unused containers of the Boston port, which, instead of being recycled for scrap, were given a second life in the form of high-tech hydroponic growing facilities. As a matter of fact, the containers themselves, in the aspect of this innovation, fulfilled only the function of a rather strong and usable shell of a living organism of a farm. It is based on autonomous equipment, the work of which is somewhat reminiscent of the device of musical instruments – with their help, the energy of thought is transformed into a symphony. And in this case, we are talking about agricultural masterpieces, where mechanical actions programmed by a person, aimed at growing vegetables, are performed by robotic equipment of the farm. It brings together the best developments in industrial programming, energy conservation, and agricultural innovations. In other words, a new scientific direction is being obtained, which can be conditionally called “salad studies”. After all, it is salads that have become one of the most successful and therefore popular crops on container farms.
It is interesting that similar projects began to appear in Ukraine as well. One of the first was the Smart Oasis Farm startup, which became famous for the invention of the “oasis” with fresh water, in other words, installations that are able to generate drinking water from the air. This development has even been tested in the United Arab Emirates – in Dubai. Now Smart Oasis Farm is setting up the production of container farms. Founder of Smart Oasis Farm Alex Prikhodko and development director Anatoly Kalantaryan shared information on how entrepreneurs manage to do this.

– How did you select equipment for the farm, where did you find information about what it should be?
– For about six months we have deeply analyzed similar projects in America, Australia, the Middle East – what technologies and equipment they use, methods and materials. After that, an understanding came of how and what to apply. By the way, there are not many container farms in Europe so far. After analyzing competitors, an analysis was made of potential partners who are already engaged in such solutions. Negotiations led us to the fact that we decided to build our greenhouse ourselves. For the next six months, we selected and ordered components for creating a prototype of a container greenhouse, made molds and hardware software, placed orders and agreed on parameters. It turned out that the entire internal layout of the greenhouse – nodes and elements, modules and automation – became our author’s development. The lion’s share of the equipment was manufactured in Ukraine, what they could not do from us was purchased in China, as well as the container for the greenhouse itself.

photo 2021 04 09 17 05 14

– Has the greenhouse been commissioned yet?
– Yes. Geographically, it is located in the Cherkasy region. -Plus, now it is possible to place the second and even the third similar box on the first container in order to clearly demonstrate the scaling of the project.
Now we are working on improving the greenhouse hardware. From the fan to each pump in the system, the controls are electronically controlled. Our key task is to drastically reduce water consumption, excluding its losses during evaporation. After all, plant nutrition is carried out by the aeroponic method.

– What was the most difficult thing?
– It was difficult to do this at all stages, there is no one to turn to for advice. But the work carried away. The prospect of the business, the ability to grow a completely ecologically safe product, regardless of the external environment, climatic conditions, as close as possible to the place of its consumption, also inspires.

– What challenges did you face when choosing crops and planting material?
– The cultures that we decided to master in the first place are basil, lettuce, baby bodice. It took a long time to select the optimal variant of the substrate, capable of ideally working with aeroponics technology. We tried both peat and coconut. They also experimented with organic substrates, linen and hemp rugs. Basalt wool came up best of all, since the material does not leave dirt behind, has a high level of absorption, retains moisture for a long time, while being inert to the environment and neutral in structure, that is, it does without oxidation or alkalization.
92693515 156466925837044 3711920477636132864 nIt was easier to choose planting material – we use Rijk Zwaan seeds. We spent some time experimenting looking for an answer to the question of the economic feasibility of using more expensive pelleted seeds and found that these costs are unnecessary in our case. At least, we did not observe an increase in yield when using pelleted seeds. We use GHE products as a fertilizer supplier. At the moment, we are preparing to grow berries and low-growing vegetables. In order to achieve optimal system settings that will speed up the growing process without losing the organoleptic characteristics of the product, sometimes we even deliberately expose the plants to additional risks, for example, we increase the temperature in order to identify critical indicators based on the results. To calculate the economic component, you need to grow the crop, weigh it, and understand what operating costs accompanied the process.

81520124 125147718968965 8550466677228175360 n

– What are the yields, do you have experience in their implementation?
– The average weight of lettuce or basil, which we get from one seat, is from 125 to 150 grams. By using a different type of containers, more spacious and oversized, we plan to increase the number of seats from 1440 to 1900 by increasing the number of tiers from four to five. Consumption of seeds per one seat is 3 pieces. The payback of such a greenhouse on salad and spicy crops at their current market price is 3-4 years.
So far we have not been selling the lettuce that we have grown. We were happy to entertain everyone – friends, guests, employees and all those who help us in launching production.

– How are you going to develop the project?
-“We are preparing to launch mass production of such container farms, which can be combined into large greenhouse complexes, where different crops can be grown at the same time. We are going to sell such boxes and technology.

– And what about the financing?
– The project has a strategic investor who has allocated the current round of financing. At the moment, we are also discussing with him further investments to create an industrial complex capable of providing the production of dozens of container-farms per month.

– What can you say about potential buyers of such farms?
– These are educational institutions that are obliged to provide children with fresh produce, and farmers who are already engaged in this business, but cannot get the predicted harvest, as well as the HoReCa segment …
In fact, we have created an electronic technologist, where all agro-technological maps are already included in the software. It is not necessary to be an agronomist to successfully grow crops in such a container.

– Where do you see great prospects in increasing the number of container farms or converting urban facilities into ecosystems for industrial plant cultivation?
– Both options make sense – both have their advantages and disadvantages. The advantages of re-equipment of existing urban facilities include the availability of communications (water and electricity), partially prepared infrastructure. However, to ensure maximum energy efficiency and due to the specific climatic conditions required for growing plants, the room still needs to be additionally waterproofed and thermally insulated. And also integrate a climate control system into it, which will make it possible to grow crops that need similar climatic requirements.
The advantages of container farms include the absence of the need for capital or repair work, and the readiness to quickly launch such complexes. It is important to note that each greenhouse complex is a closed climate cycle that allows you to grow different crops with a variety of climatic requirements.

– Why, in your opinion, urban farming in Ukraine is not developing very rapidly, when to expect a boom?
– Due to the abundance of natural resource opportunities that Ukraine has. But over time, this segment will begin to develop more rapidly in our country due to economic, logistic and technological factors. Also, this direction carries with it the greening of both production and consumption, which, in turn, also develops and becomes more in demand by people, companies and the state.

photo 2021 04 09 17 05 17

 

 

based on materials from the magazine Vegetables and Fruits

Continue Reading

Equipment

Israel – from artificial roots to drip heating

r25IQAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATwa9ZAABb8GSAgAAAABJRU5ErkJggg==
Growing food at high temperatures with little water is very common for Israeli growers.

“That’s why growers worldwide can use their solutions to adapt to warmer weather conditions,” David Silverman, advisor to Israel’s Ministry of Agriculture, recently told a webinar last week where Israeli companies showcased their greenhouse technologies. 

“Despite its small size, Israel has a dense amount of agricultural and horticultural research institutions. With our diverse topography and climatic zones, we manage to maintain intensive cultivation in the desert.”

csm Greenhouse technology the future is already here 3 5daaa3e943
Israel - from artificial roots to drip heating 108

According to David, the solution should be threefold: genetics, developing resistant varieties, migration, choosing the right zone to grow certain crops, and implementing technology. Gaining knowledge about these Israeli technologies and cultivation solutions was the aim of the webinar Greenhouse Technologies organized by the Foreign Trade Admission of Israel in the Netherlands. During the webinar, Israeli companies presented their solutions for growing in harsh climates.

Ziv Shaked from DryGair presented their solution for reducing humidity in greenhouses. Because pathogens and fungi thrive in moist air, it is important to lower the humidity. In addition, humidity and energy go hand in hand.

The DryGair solution absorbs water from the air, which is condensed inside the machine. This ensures air circulation in the greenhouse, where the air is also cooled and a homogeneous climate is created.

In the Netherlands, DryGair works together with Royal Brinkman to provide growers with this solution. The water collected in the machine can later be used for irrigation.

Itamar Ziseling of MetoMotion discussed global labor shortages in the horticultural sector. To counter this shortage, the company has developed a system to reduce labor costs. The Greenhouse Robotic Worker (GRoW) is a self-contained device with two robotic arms, a 3D vision system and a camera system with which the crops can be monitored. The robotic arms collect the harvested products, place them on a treadmill, after which they are packed and transported.

Thanks to the camera, GRoW can also harvest at night. “The financial value of GRoW is enormous, and the payback time is less than 2 years, while saving 80% of labor, allowing growers to focus on their product rather than the reliance on labor,” concluded Itamar.

Tal Maor of Viridix noted that it is difficult to figure out what crops actually need. Therefore, they have developed a tool for the analysis of collected data using an artificial root.

“With the right tools, growers can control irrigation in a simple and effective way,” Tal said. The artificial root based on solar energy can remain in the ground for years and can be used both in the open ground and in greenhouses. “All relevant data can be found on one platform, for every crop type and irrigation system. The results are difficult for every grower to interpret. That is why we can link the system to an irrigation control system, creating an autonomous irrigation solution without the hardware in the greenhouse needs to be replaced.”

delta 1

Israel is known for their drip irrigation systems. However, Erez Gold from Thermo Siv  presented an innovative green heating solution, which can also be called the heating equivalent of the drip irrigation. Their product is a coated yarn that can be heated and provides accurate heating close to the crop. The material can be used for heating the roots or for vertical placement next to the plants. It is interesting to see that this material is also used in the automotive sector. There are many advantages to cooperation between sectors.

Lior Hessels of GrowPonics discussed an entirely different problem: although substrate growers prefer to use organic fertilizers, this is often not enough for their crops, according to the producer who makes smart use of bacteria.

The company has started imitating the production process of chemical fertilizers, but in a natural way. Bacteria are used to absorb nitrogen from the air and convert it into ammonia, since plants cannot absorb the nitrogen from the air.

agam
The Agam Ventilation Latent Heat Converter

Hagai Palevsky of Agam Greenhouse Energy Systems highlighted the dangers of excess humidity in greenhouses, which causes the spread of mold, mildew and other pathogens. The Ventilated Latent Heat Converter absorbs the air via a salt solution and then filters it. In this way the greenhouse can be closed and energy is saved. Also, the temperature is regulated if necessary. This can both replace and supplement the existing air conditioning systems in the greenhouse.

Finally, Eytan Heller of Arugga AI Farming spoke about labor shortages as a major problem in horticulture. That is why Arugga has developed an autonomous soil robot for the treatment and monitoring of every plant in the greenhouse. They focused first on tomatoes and in particular on pollination. The robot is based on AI and imitates pollination. Extensions of the robot allow for non-contact pruning, detecting diseases and predicting yield. Because the business model is based on leasing, the robot is more affordable for growers.

/technique-system/

Continue Reading

Trending

Total
2
Share