Connect with us

Technique system

“Our biggest advantage is that we don’t heat or use lights in our greenhouses”

For people buying tomatoes, numbers like 986 hectares of tomato cultivation mean very little. Yes, it’s many football fields, but what else? Nothing. Percentages are also tricky. Twenty percent lower CO2 emissions. Fine, but what does that mean? Quite a lot, according to the folks at the Azura Group.

The packaging plant

This French-Moroccan tomato producer indeed has almost 1,000 hectares of tomatoes. They’ve decided to measure, reduce, compensate, and communicate their CO2 emissions in the chain. From March 2021, ‘100% carbon neutral’ will be emblazoned on all Azura brand Moroccan tomato packaging. These can be found in the major European supermarket chains.

The Azura Group doesn’t only grow tomatoes. It includes herbs, edible flowers, and clams – a sea creature – in its assortment too. The company wants to tell consumers about the sustainability steps they’ve made. And the steps that still need to be taken in the chain. This grower’s tomatoes come from Morocco, from close to Agadir. That’s more than 800 kilometers by road from Tangier, just below the Strait of Gibraltar.

If you zoom in on Google Earth, you’ll see a patchwork of greenhouses there. This family business, founded in 1988, uses many of these to cultivate tomatoes. The company now markets round and oval cherry tomatoes. They also have smaller, mixed red, yellow, orange, and dark brown cherry tomatoes and larger, round vine tomatoes. All these now have the Azura Group’s special logo and a QR code on their packaging. As far as they know, they’re the first to take this remarkable step. And they’re eager to discuss it.

Water and warmth
The company wants to provide more information about its sustainability process, especially for consumers. “It fits in with the course the newly appointed board chose last year,” says Céline Montauriol. She’s been the Azura Group’s Head of Corporate Social Responsibility (CSR) for just over six months. When we spoke to her via a video link, Montauriol was in Morocco. Azura has greenhouses there in Agadir and an office in Casablanca.

Montauriol is close to the action but understands that all the changes don’t translate well to European customers. She points out that the company started the sustainability process on its own initiative. It communicates this on its products’ packaging too. “For us, it’s not a bonus, but a must. We want to be a sustainability partner for supermarkets, not just producers.”

In 2010, Azura did its first ‘Life Cycle Assessment’ to work out its environmental impact. This was reassessed last year. The company did the entire test according to the international ISO-standards 14040 and 14044. The result? There was a 20% reduction in CO2 emissions compared to 2010, as mentioned above. Today, producing a kilogram of Azura tomatoes releases 1.26 kg of CO2 from ‘farm to fork’.

Facts and feelings
“Our biggest advantage is that we don’t heat or use lights in our greenhouses,” continues Montauriol. That’s thanks to North Africa’s favorable climate. On the other hand, they use a lot of water. “You use more in a warm climate.” That’s always led to discussions about choosing between domestic and imported products on the shelves.

“We’ve noticed this too and see that European countries often prefer local products. Sometimes there’s also a bit of politics involved. Decisions aren’t always based on hard facts. Feelings and perception play a role too. It’s up to us to show that we don’t only grow good, healthy tomatoes; we do so sustainability. That will certainly benefit the world, the environment, and tomatoes’ shelf position.”

The Azura Group’s motto is ‘measuring is knowing’. And that sometimes produces remarkable results. “People often frown on logistics because of its CO2 emissions,” says Céline. She attributes this party to the social debate around cars. People consider this mode of transport in a negative light, due to it being a polluter. However, along the entire tomato chain, logistics is responsible for a fairly small amount of CO2 emissions.

“Half of our CO2 emissions come from the tomatoes’ production phase.” She’s referring to the sustainability report that was drawn up. It compares Azura’s farming methods to cultivation like heated conventional greenhouses in France. The packaging chain has the second-highest CO2 emissions, with logistics coming in third place.

Packaging with the Azura name in France/French supermarkets with its logo/QR code

“Companies must nevertheless continue to take steps on all fronts,” adds the CSR Manager. She used to work in the French grain sector, helping another company take these steps. Biodiversity is only one of the significant challenges facing that sector. At Azura, in concrete terms, packaging should change from a sustainability point of view. “All the plastic we use for packaging tomatoes is already recyclable r-PET.”

“Unfortunately, this isn’t yet the case in all our sales countries. That’s one of the reasons we’re looking at 100% plastic-free packaging. We, and our packaging partners, are looking into cardboard. We may be able to present a new idea in this area this year. The challenges remain the tomatoes’ shelf life and good visibility on the shelf. People must also be able to see the product in its package. Also, making cardboard uses a lot of water. That’s still preventing us from opting for only cardboard.”

And then, a large producer like Azura must also consider buyers in each country’s packaging requirements. “But one thing’s certain. Our fragile products need to be packaged. This makes them durable and easy to transport. In Morocco, we pack everything ourselves, and then the product is transported. The tomatoes must look their best when they reach clients,” Montauriol concludes. And nice-tasting tomatoes are most important to consumers. That’s in addition to all the information about them measuring and learning about them.

Azura is also involved in social projects.

Major player
The Azura Group was founded in 1988 when it opened its first cultivation facility. Today, this French-Moroccan tomato producer has 986 hectares of greenhouse cultivation. That’s partly thanks to a €40 million investment. The company expanded its acreage by 100 hectares over the past two seasons.

The group has 46 hectares of herbs and farms edible flowers and clams too. In 2019-2020, it had a turnover of €304 million. Tomato and herb products made up 89% of this.

Azura farms in the Agadir region and has an office in Casablanca. The group works with a logistics center in Perpignan, France, and service providers in Germany and the United Kingdom.

These three countries make up its top sales markets. Although, in the winter, Azura tomatoes can be found in the Netherlands, too, under private label. Only in France does Azure sells under its own brand.

The Azura Group is strongly committed to sustainability. The company requested the Delft University of Technology in the Netherlands’ help to measure its environmental impact. They calculated that it costs the tomato producer €0.30 to offset a kg of tomatoes’ ecological footprint.

The company compensates for almost 192,000 tons of CO₂ annually. To achieve this, the group works with Climate Partner. Azura’s helped set up a wind farm in the Tangier-Tétouan region in Morocco and a rain forest protection project in Tambopata in Peru.

The company wants to make progress in the area of water consumption too. So, it aims to stop using groundwater by 2022 entirely. It wants to switch to using water from a special desalination project. This converts ocean water into use for cultivation.

Voor meer informatie:
Azura Group

Continue Reading


Japanese tomato harvest robot in action in Tomatoworld

A new tomato harvesting robot has recently been driving through the paths of Tomatoworld. It is the latest product of inaho Europe, a subsidiary of the Japanese company inaho.  “The purpose of launching the demonstration at Tomatoworld is to allow more interested people to see the robot in operation,” says Takahito Shimizo, managing director of inaho Europe. “We want to demonstrate the robot and receive more feedback from growers, in order to develop and increase the value of the robot.”

Snack tomato robot
Tomatoworld is a horticultural information and education center in Westland, Netherlands. In the greenhouse, snack tomatoes are grown.

Takahito Shimizo shows how the robot is a fully automatic harvesting device for snack tomatoes. “The AI algorithm identifies the ripe fruits by color and size and then harvests the ripe snack tomatoes.”

inaho has already conducted field trials with growers in Japan and demonstrated a reduction in human working hours of around 16% by setting up a workflow in which robots harvest during the nighttime before humans do.

Meanwhile, inaho also found that there are differences between Japanese and Dutch growers in terms of harvest and post-harvest operations. “For example, the standards for the picking appropriate color of the fruits and the frequency of harvesting are different,” says Takahito.

In order to develop a solution that is more suitable for Dutch growers, inaho is keen to get a better understanding of the Dutch growers’ practices and receive more operational feedback from them. In this context, inaho is also actively seeking a grower partner who would be able to carry out a field trial of the harvesting robot.

Growers welcome
The demonstration in Tomatoworld also contributes to this: growers are invited to come and see and assess the robot. “We are happy to discuss details about the robot, such as its functions and expected future updates. We can also provide simulations to calculate the labor and cost savings, based on the results of the trials in Japan,” Takahito says.

It is not the Japanese company’s first robot. inaho already launched an AI-equipped asparagus harvesting robot (video) in 2019. They are also working on a robot that can phenotype plants. inaho operates according to the Robot-as-a-Service (RaaS) business model – paying per harvested product.



Continue Reading


Symphony of Salad Studies

Ten years ago, the first container farms began to appear in the United States, where enterprising startups tried to grow salads and other green crops. They began to install containers at the places of harvest consumption so as not to waste time, effort and money on the delivery of goods. The first to go were the unused containers of the Boston port, which, instead of being recycled for scrap, were given a second life in the form of high-tech hydroponic growing facilities. As a matter of fact, the containers themselves, in the aspect of this innovation, fulfilled only the function of a rather strong and usable shell of a living organism of a farm. It is based on autonomous equipment, the work of which is somewhat reminiscent of the device of musical instruments – with their help, the energy of thought is transformed into a symphony. And in this case, we are talking about agricultural masterpieces, where mechanical actions programmed by a person, aimed at growing vegetables, are performed by robotic equipment of the farm. It brings together the best developments in industrial programming, energy conservation, and agricultural innovations. In other words, a new scientific direction is being obtained, which can be conditionally called “salad studies”. After all, it is salads that have become one of the most successful and therefore popular crops on container farms.
It is interesting that similar projects began to appear in Ukraine as well. One of the first was the Smart Oasis Farm startup, which became famous for the invention of the “oasis” with fresh water, in other words, installations that are able to generate drinking water from the air. This development has even been tested in the United Arab Emirates – in Dubai. Now Smart Oasis Farm is setting up the production of container farms. Founder of Smart Oasis Farm Alex Prikhodko and development director Anatoly Kalantaryan shared information on how entrepreneurs manage to do this.

– How did you select equipment for the farm, where did you find information about what it should be?
– For about six months we have deeply analyzed similar projects in America, Australia, the Middle East – what technologies and equipment they use, methods and materials. After that, an understanding came of how and what to apply. By the way, there are not many container farms in Europe so far. After analyzing competitors, an analysis was made of potential partners who are already engaged in such solutions. Negotiations led us to the fact that we decided to build our greenhouse ourselves. For the next six months, we selected and ordered components for creating a prototype of a container greenhouse, made molds and hardware software, placed orders and agreed on parameters. It turned out that the entire internal layout of the greenhouse – nodes and elements, modules and automation – became our author’s development. The lion’s share of the equipment was manufactured in Ukraine, what they could not do from us was purchased in China, as well as the container for the greenhouse itself.

photo 2021 04 09 17 05 14

– Has the greenhouse been commissioned yet?
– Yes. Geographically, it is located in the Cherkasy region. -Plus, now it is possible to place the second and even the third similar box on the first container in order to clearly demonstrate the scaling of the project.
Now we are working on improving the greenhouse hardware. From the fan to each pump in the system, the controls are electronically controlled. Our key task is to drastically reduce water consumption, excluding its losses during evaporation. After all, plant nutrition is carried out by the aeroponic method.

– What was the most difficult thing?
– It was difficult to do this at all stages, there is no one to turn to for advice. But the work carried away. The prospect of the business, the ability to grow a completely ecologically safe product, regardless of the external environment, climatic conditions, as close as possible to the place of its consumption, also inspires.

– What challenges did you face when choosing crops and planting material?
– The cultures that we decided to master in the first place are basil, lettuce, baby bodice. It took a long time to select the optimal variant of the substrate, capable of ideally working with aeroponics technology. We tried both peat and coconut. They also experimented with organic substrates, linen and hemp rugs. Basalt wool came up best of all, since the material does not leave dirt behind, has a high level of absorption, retains moisture for a long time, while being inert to the environment and neutral in structure, that is, it does without oxidation or alkalization.
92693515 156466925837044 3711920477636132864 nIt was easier to choose planting material – we use Rijk Zwaan seeds. We spent some time experimenting looking for an answer to the question of the economic feasibility of using more expensive pelleted seeds and found that these costs are unnecessary in our case. At least, we did not observe an increase in yield when using pelleted seeds. We use GHE products as a fertilizer supplier. At the moment, we are preparing to grow berries and low-growing vegetables. In order to achieve optimal system settings that will speed up the growing process without losing the organoleptic characteristics of the product, sometimes we even deliberately expose the plants to additional risks, for example, we increase the temperature in order to identify critical indicators based on the results. To calculate the economic component, you need to grow the crop, weigh it, and understand what operating costs accompanied the process.

81520124 125147718968965 8550466677228175360 n

– What are the yields, do you have experience in their implementation?
– The average weight of lettuce or basil, which we get from one seat, is from 125 to 150 grams. By using a different type of containers, more spacious and oversized, we plan to increase the number of seats from 1440 to 1900 by increasing the number of tiers from four to five. Consumption of seeds per one seat is 3 pieces. The payback of such a greenhouse on salad and spicy crops at their current market price is 3-4 years.
So far we have not been selling the lettuce that we have grown. We were happy to entertain everyone – friends, guests, employees and all those who help us in launching production.

– How are you going to develop the project?
-“We are preparing to launch mass production of such container farms, which can be combined into large greenhouse complexes, where different crops can be grown at the same time. We are going to sell such boxes and technology.

– And what about the financing?
– The project has a strategic investor who has allocated the current round of financing. At the moment, we are also discussing with him further investments to create an industrial complex capable of providing the production of dozens of container-farms per month.

– What can you say about potential buyers of such farms?
– These are educational institutions that are obliged to provide children with fresh produce, and farmers who are already engaged in this business, but cannot get the predicted harvest, as well as the HoReCa segment …
In fact, we have created an electronic technologist, where all agro-technological maps are already included in the software. It is not necessary to be an agronomist to successfully grow crops in such a container.

– Where do you see great prospects in increasing the number of container farms or converting urban facilities into ecosystems for industrial plant cultivation?
– Both options make sense – both have their advantages and disadvantages. The advantages of re-equipment of existing urban facilities include the availability of communications (water and electricity), partially prepared infrastructure. However, to ensure maximum energy efficiency and due to the specific climatic conditions required for growing plants, the room still needs to be additionally waterproofed and thermally insulated. And also integrate a climate control system into it, which will make it possible to grow crops that need similar climatic requirements.
The advantages of container farms include the absence of the need for capital or repair work, and the readiness to quickly launch such complexes. It is important to note that each greenhouse complex is a closed climate cycle that allows you to grow different crops with a variety of climatic requirements.

– Why, in your opinion, urban farming in Ukraine is not developing very rapidly, when to expect a boom?
– Due to the abundance of natural resource opportunities that Ukraine has. But over time, this segment will begin to develop more rapidly in our country due to economic, logistic and technological factors. Also, this direction carries with it the greening of both production and consumption, which, in turn, also develops and becomes more in demand by people, companies and the state.

photo 2021 04 09 17 05 17



based on materials from the magazine Vegetables and Fruits

Continue Reading


Israel – from artificial roots to drip heating

Growing food at high temperatures with little water is very common for Israeli growers.

“That’s why growers worldwide can use their solutions to adapt to warmer weather conditions,” David Silverman, advisor to Israel’s Ministry of Agriculture, recently told a webinar last week where Israeli companies showcased their greenhouse technologies. 

“Despite its small size, Israel has a dense amount of agricultural and horticultural research institutions. With our diverse topography and climatic zones, we manage to maintain intensive cultivation in the desert.”

csm Greenhouse technology the future is already here 3 5daaa3e943
Israel - from artificial roots to drip heating 96

According to David, the solution should be threefold: genetics, developing resistant varieties, migration, choosing the right zone to grow certain crops, and implementing technology. Gaining knowledge about these Israeli technologies and cultivation solutions was the aim of the webinar Greenhouse Technologies organized by the Foreign Trade Admission of Israel in the Netherlands. During the webinar, Israeli companies presented their solutions for growing in harsh climates.

Ziv Shaked from DryGair presented their solution for reducing humidity in greenhouses. Because pathogens and fungi thrive in moist air, it is important to lower the humidity. In addition, humidity and energy go hand in hand.

The DryGair solution absorbs water from the air, which is condensed inside the machine. This ensures air circulation in the greenhouse, where the air is also cooled and a homogeneous climate is created.

In the Netherlands, DryGair works together with Royal Brinkman to provide growers with this solution. The water collected in the machine can later be used for irrigation.

Itamar Ziseling of MetoMotion discussed global labor shortages in the horticultural sector. To counter this shortage, the company has developed a system to reduce labor costs. The Greenhouse Robotic Worker (GRoW) is a self-contained device with two robotic arms, a 3D vision system and a camera system with which the crops can be monitored. The robotic arms collect the harvested products, place them on a treadmill, after which they are packed and transported.

Thanks to the camera, GRoW can also harvest at night. “The financial value of GRoW is enormous, and the payback time is less than 2 years, while saving 80% of labor, allowing growers to focus on their product rather than the reliance on labor,” concluded Itamar.

Tal Maor of Viridix noted that it is difficult to figure out what crops actually need. Therefore, they have developed a tool for the analysis of collected data using an artificial root.

“With the right tools, growers can control irrigation in a simple and effective way,” Tal said. The artificial root based on solar energy can remain in the ground for years and can be used both in the open ground and in greenhouses. “All relevant data can be found on one platform, for every crop type and irrigation system. The results are difficult for every grower to interpret. That is why we can link the system to an irrigation control system, creating an autonomous irrigation solution without the hardware in the greenhouse needs to be replaced.”

delta 1

Israel is known for their drip irrigation systems. However, Erez Gold from Thermo Siv  presented an innovative green heating solution, which can also be called the heating equivalent of the drip irrigation. Their product is a coated yarn that can be heated and provides accurate heating close to the crop. The material can be used for heating the roots or for vertical placement next to the plants. It is interesting to see that this material is also used in the automotive sector. There are many advantages to cooperation between sectors.

Lior Hessels of GrowPonics discussed an entirely different problem: although substrate growers prefer to use organic fertilizers, this is often not enough for their crops, according to the producer who makes smart use of bacteria.

The company has started imitating the production process of chemical fertilizers, but in a natural way. Bacteria are used to absorb nitrogen from the air and convert it into ammonia, since plants cannot absorb the nitrogen from the air.

The Agam Ventilation Latent Heat Converter

Hagai Palevsky of Agam Greenhouse Energy Systems highlighted the dangers of excess humidity in greenhouses, which causes the spread of mold, mildew and other pathogens. The Ventilated Latent Heat Converter absorbs the air via a salt solution and then filters it. In this way the greenhouse can be closed and energy is saved. Also, the temperature is regulated if necessary. This can both replace and supplement the existing air conditioning systems in the greenhouse.

Finally, Eytan Heller of Arugga AI Farming spoke about labor shortages as a major problem in horticulture. That is why Arugga has developed an autonomous soil robot for the treatment and monitoring of every plant in the greenhouse. They focused first on tomatoes and in particular on pollination. The robot is based on AI and imitates pollination. Extensions of the robot allow for non-contact pruning, detecting diseases and predicting yield. Because the business model is based on leasing, the robot is more affordable for growers.


Continue Reading